Example 9 Prove that in a \triangle ABC, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.

Solution Let the three sides of the triangle BC, CA and AB be represented by \vec{a}, \vec{b} and \vec{c} , respectively [Fig. 10.2].

$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
. i.e., $\vec{a} + \vec{b} = -\vec{c}$

which pre cross multiplying by \vec{a} , and

post cross multiplying by \vec{b} , gives

$$\vec{a} \times \vec{b} = \vec{c} \times \vec{a}$$

and

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$$

respectively. Therefore,

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

$$\left| \vec{a} \times \vec{b} \right| = \left| \vec{b} \times \vec{c} \right| = \left| \vec{c} \times \vec{a} \right|$$

$$\Rightarrow |\vec{a}||\vec{b}|\sin(\pi - C) = |\vec{b}||\vec{c}|\sin(\pi - A) = |\vec{c}||\vec{a}|\sin(\pi - B)$$

$$\Rightarrow$$
 $ab \sin C = bc \sin A = ca \sin B$

Dividing by abc, we get

$$\frac{\sin C}{c} = \frac{\sin A}{a} = \frac{\sin B}{b}$$
 i.e. $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

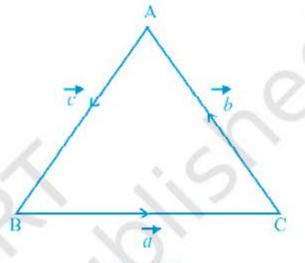


Fig. 10.2